Answer:
probably the trip where it took u 5 seconds
Answer:
The answer to the question is;
Based on their acceleration the rank of the satellites from largest to smallest is.
B >→ A >→ E >→ C >→ F >→ D.
Explanation:
Acceleration is given by 
Therefore the acceleration for each of the satellite is given by
Satellite A)
= 5.12 m/s²
Satellite B)
= 10.24 m/s²
Satellite C)
= 2.56 m/s²
Satellite D)
= 0.16 m/s²
Satellite E)
= 2.88 m/s²
Satellite F)
= 0.64 m/s²
Therefore in order of decreasing acceleration, from largest to smallest we have
Satellite B) > Satellite A) >Satellite E) >Satellite C)>Satellite F)>Satellite D).
Answer:
a = √ (a_t² + a_c²)
a_t = dv / dt
, a_c = v² / r
Explanation:
In a two-dimensional movement, the acceleration can have two components, one in each axis of the movement, so the acceleration can be written as the components of the acceleration in each axis.
a = aₓ i ^ + a_y j ^
Another very common way of expressing acceleration is by creating a reference system with a parallel axis and a perpendicular axis. The axis called parallel is in the radial direction and the perpendicular axis is perpendicular to the movement, therefore the acceleration remains
a = √ (a_t² + a_c²)
where the tangential acceleration is
a_t = dv / dt
the centripetal acceleration is
a_c = v² / r
Answer:
990 J
Explanation:
Kinetic energy is:
KE = ½ mv²
Given m = 55 kg and v = 6 m/s:
KE = ½ (55 kg) (6 m/s)²
KE = 990 J
To solve this problem it is necessary to apply the concepts related to the conservation of energy, through the balance between the work done and its respective transformation from the gravitational potential energy.
Mathematically the conservation of these two energies can be given through

Where,
W = Work
Final gravitational Potential energy
Initial gravitational Potential energy
When the spacecraft of mass m is on the surface of the earth then the energy possessed by it

Where
M = mass of earth
m = Mass of spacecraft
R = Radius of earth
Let the spacecraft is now in an orbit whose attitude is
then the energy possessed by the spacecraft is

Work needed to put it in orbit is the difference between the above two


Therefore the work required to launch a spacecraft from the surface of the Eart andplace it ina circularlow earth orbit is
