step one
calculate the % of oxygen
from avogadro constant
1moles = 6.02 x 10 ^23 atoms
what about 4.33 x10^22 atoms
= ( 4.33 x 10^ 22 x 1 mole ) / 6.02 10^23= 0.0719 moles
mass= 0.0719 x16= 1.1504 g
% composition is therefore= ( 1.1504/3.25) x100 = 35.40%
step two
calculate the % composition of chrorine
100- (25.42 + 35.40)=39.18%
step 3
calculate the moles of each element
that is
Na = 25.42 /23=1.1052 moles
Cl= 39.18 /35.5=1.1037moles
O= 35.40/16= 2.2125 moles
step 4
find the mole ratio by dividing each mole by 1.1037 moles
that is
Na = 1.1052/1.1037=1.001
Cl= 1.1037/1.1037= 1
0=2.2125 = 2
therefore the empirical formula= NaClO2
1s^2
2s^2
2p^6
3s^2
3p^6
4s^2
3d^10
4p^4
Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
The correct answer is due to rapid conversion of nitrates into nirites in extracellular fluids.
Due to the fact that it is quickly transformed to nitrates and nitrites in the extracellular fluid, nitric oxide (NO) functions as a paracrine signal that only impacts nearby cells. Because it relaxes the smooth muscle cells in blood vessel walls, nitric oxide (NO) causes blood vessels to widen. Cell signaling is a type of cellular communication in which a cell produces a signal to cause changes in neighboring cells, changing the behavior of those cells. Paracrine signaling is one type of cell signaling. Responses to allergens, tissue repair, the development of scar tissue, and blood clotting are a few examples of paracrine signaling. The transmission of signals through synapses between nerve cells is known as paracrine signaling.
Learn more about paracrine signal here :-
brainly.com/question/12538424
#SPJ4
<u>Plum Pudding Model(Thomson's atomic model)</u>
- Thomson's atomic model states that an atom has a positive sphere charge with electrons embedded inside it. He compared the atom with a plum pudding,as the electrons according to him seemed like the dry fruits embedded in the spherical pudding.
<u>Rutherford's Model</u>
- However Rutherford bombarded high energy streams of α-particles on a thin gold foil of 100 nm thickness. The deflection produced by the trajectory of these high energy α-particles after interaction with the thin sheet of gold was studied by placing a screen made up of zinc sulfide around the gold foil.
- The major observations made by Rutherford were that a very huge fraction of α-particles passed through the gold sheet without getting deflected. Thus he concluded that the major part of an atom must be empty.
- Very few α-particles got deflected minutely or at very small angles by the gold sheet when they were bombarded against it. Also very few particles got deflected at large angles. This made him conclude that the positive charge is concentrated in a very small region and is not distributed uniformly.
From the above observations he gave the following postulates:
- An atom is made up of positively charged particles. The mass of an atom was concentrated in small region which is named as the nucleus of an atom.
- The nucleus is surrounded by electrons which are negatively charged particles which revolve around the nucleus in a fixed circular path called as “orbits.”
- An atom is electrically neutral because electrons are negatively charged and the nucleus is positively charged. The electrons are held by the nucleus due to a strong electrostatic force.
- Compared to the total size of an atom the size of the nucleus is very small.