Answer:
1.36 x 10^-3 cm
Explanation:
Area = 50 ft^2 = 46451.5 cm^2
mass = 6 oz = 170.097 g
density = 2.70 g/cm^3
Let t be the thickness of foil in cm.
mass = volume x density
mass = area x thickness x density
170.097 = 46451.5 x t x 2.70
t = 1.36 x 10^-3 cm
Thus, the thickness of aluminium foil is 1.36 x 10^-3 cm.
Answer:
P = 1097 Watt
Explanation:
given,
length of stairs, L = 130 m
inclination with horizontal,θ = 30°
mass of the football player = 105 Kg
time = 61 s
we know,

Work = change in Potential energy
h = L sin 30°
h = 130 x 0.5
h = 65 m
W = m g h
W = 105 x 9.8 x 65
W = 66885 J
now,

P = 1097 Watt
hence, the power output on the way is 1097 W
<em>Answer:</em>
<em>
</em>
<em>The three major categories of energy for electricity generation are fossil fuels (coal, natural gas, and petroleum), nuclear energy, and renewable energy sources. Most electricity is generated with steam turbines using fossil fuels, nuclear, biomass, geothermal, and solar thermal energy.</em>
<em />
<em />
Answer:
4.635 *10^12 Neutrinos
Explanation:
Here in this question, we are to determine the number of neutrinos in billions produced, given the power generated by the proton-proton cycle.
We proceed as follows;
In proton-proton cycle generates 26.7 MeV of energy and in this cycle two neutrinos are produced.
From the question, we are given that
Power P = 9.9 watts = 9.9 J/s
Watts is same as J/s
The number of proton-proton cycles required to generate E energy is N = E / E '
Where E ' = Energy generated in proton-proton cycle which is given as 26.7 Mev in the question
Converting Mev to J, we have
= 26.7 x1.6 x10 -13 J
To get the number N which is the number of proton-proton cycle required, we have;
N = 9.9 /(26.7 x1.6 x10^-13) = 2.32 * 10^12
Since we have two proton cycles( proton-proton), it automatically means 2 neutrinos will be produced.
Therefore number of neutrions produced = 2 x Number of proton-proton cycles = 2 * 2.32 * 10^12 = 4.635 * 10^12 neutrinos