Answer:
W / n = - 9133 J / mol, W / n = 3653 J / mol
, e = 0.600
Explanation:
The Carnot cycle is described by
In this case they indicate that the final volume is
V = 3V₀
In the part of the heat absorption cycle from the source is an isothermal expansion
W = n RT ln (V₀ / V)
W / n = 8.314 1000 ln (1/3)
W / n = - 9133 J / mol
During the part of the isothermal compression in contact with the cold focus, as in a machine the relation of volumes is maintained in this part is compressed three times
W / n = 8.314 400 (3)
W / n = 3653 J / mol
The efficiency of the cycle is
e = 1- 400/1000
e = 0.600
<span>3.36x10^5 Pascals
The ideal gas law is
PV=nRT
where
P = Pressure
V = Volume
n = number of moles of gas particles
R = Ideal gas constant
T = Absolute temperature
Since n and R will remain constant, let's divide both sides of the equation by T, getting
PV=nRT
PV/T=nR
Since the initial value of PV/T will be equal to the final value of PV/T let's set them equal to each other with the equation
P1V1/T1 = P2V2/T2
where
P1, V1, T1 = Initial pressure, volume, temperature
P2, V2, T2 = Final pressure, volume, temperature
Now convert the temperatures to absolute temperature by adding 273.15 to both of them.
T1 = 27 + 273.15 = 300.15
T2 = 157 + 273.15 = 430.15
Substitute the known values into the equation
1.5E5*0.75/300.15 = P2*0.48/430.15
And solve for P2
1.5E5*0.75/300.15 = P2*0.48/430.15
430.15 * 1.5E5*0.75/300.15 = P2*0.48
64522500*0.75/300.15 = P2*0.48
48391875/300.15 = P2*0.48
161225.6372 = P2*0.48
161225.6372/0.48 = P2
335886.7441 = P2
Rounding to 3 significant figures gives 3.36x10^5 Pascals.
(technically, I should round to 2 significant figures for the result of 3.4x10^5 Pascals, but given the precision of the volumes, I suspect that the extra 0 in the initial pressure was accidentally omitted. It should have been 1.50e5 instead of 1.5e5).</span>
Well, the baselines are 65 feet, and the distance from home plate to pitcher's mound is 50 feet. So I believe your answer would be 50 feet.
Answer:
E. downward and constant
Explanation:
Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.
For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.
Answer:
Work done, W = 750 joules
Explanation:
It is given that,
Force acting on the object, F = 50 N
It moves to a distance of, d = 15 meters
We need to find the work done on an object. We know that the product of force and distance covered is called the work done. As the force and the displacement are in same direction. So,


W = 750 joules
So, the work done on an object is 750 joules. Hence, this is the required solution.