Answer:
moles H₂O = 10
Explanation:
The mass of Na₂CO₃⋅xH₂O is 3.837 g and the mass of Na₂CO₃ is 1.42g
Therefore the mass of xH₂O is 3.837 - 1.42 = 2.417 g
The molar mass of Na₂CO₃ is 106 g/mol and for H₂O is 18 g/mol
The moles of Na₂CO₃ and H₂O in the sample are:
Na₂CO₃ = 1.42 / 106 = 0.01340 moles
H₂O = 2.417 / 18 = 0.1343
Now using rule of three :
1 mole of Na₂CO₃ has x moles of H₂O
0.01340 moles of Na₂CO₃ has 0.1343 moles of H₂O
x = 1 * 0.1343 / 0.01340 = 10
Answer:
F. 2NO + 02 —> 2NO
H. 4NH3 + 502 —> 4NO + 6H20
Explanation:
The law of conservation of mass states that matter can neither be created nor destroyed during a chemical reaction but can be convert from one form to another.
2NO + 02 —> 2NO
From the above, the total number of N on the left balance the total number on the right i.e 2 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 2 atoms of O on both side of the equation. This is certified by the law of conservation of mass.
4NH3 + 502 —> 4NO + 6H20
From the above, the total number of N on the left balance the total number on the right i.e 4 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 10 atoms of O on both side of the equation.
The total number of H on the left balance the total number on the right i.e 12 atoms of O on both side of the equation.
This is certified by the law of conservation of mass.
The rest equation did not conform to the law of conservation of mass as the atoms on the left side did not balance those on the right side
The bigger the atomic radius the easier it is to oxidise the atom. Remember that an atom is oxidized by the loss of an electron.
Explanation:
The bigger the atomic radius the further away the valence electron are from the attractive force of the atomic nucleus. This means that the energy required to remove an electron from the valence shell is easier compared to an atom with a smaller atomic radius. This is because you need to overcome the attractive force of the nucleus on the electron for you to oxidize the atom.
Learn More:
For more on oxidation energy check out;
brainly.com/question/8835627
brainly.com/question/13507502
#LearnWithBrainly
Answer:
Explanation:
oxygen is a 15 and nitrogen science chemistry i'm guessing