Boron’s chemistry is not typical of its group. is group 3A (13) shows the increasing metallic character from Al to Tl.
All Boron compounds are covalent whereas the other elements in group 3A (13) form mostly ionic compounds.
Except for Boron, the other elements of group 3A (13) show increasing metallic character from Al to Tl. But Boron is a metalloid.
Compared to the other elements in group 3A, boron has a lower reactivity in chemical terms (13)
The metalloid boron (B), as well as the metals aluminium (Al), gallium (Ga), indium (In), and thallium, are all part of group 3A (or IIIA) of the periodic table (Tl). In contrast to the other members of Group 3A, the element borax primarily forms covalent connections.
To learn more about group 3A (13) refer the link:
brainly.com/question/5489194
#SPJ4
<span>(0.1875 moles)(98.004 g/mole) = 18.37575 g </span>
<span>In correct number of significant figures: 18.4 </span>
Answer:
我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈
Explanation:
我實際上不知道我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g