Answer:
pH = 12.52
Explanation:
Given that,
The [H+] concentration is
.
We need to find its pH.
We know that, the definition of pH is as follows :
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Put all the values,
![pH=-log[3\times 10^{-13}]\\\\pH=12.52](https://tex.z-dn.net/?f=pH%3D-log%5B3%5Ctimes%2010%5E%7B-13%7D%5D%5C%5C%5C%5CpH%3D12.52)
So, the pH is 12.52.
Answer:
A D F
Explanation:
Its right but its not in order But its A D and F
Answer is: osmotic pressure.
Osmotic pressure, alongside the vapor pressure depression, freezing point depression and the boiling point elevation are<span> the </span>colligative properties od solution.
<span>The direction of osmotic pressure is always from the side with the lower concentration (c = n/V) of solute to the side with the higher concentration.</span>
I couldn't really find anything about the growth time but it does say that it could remain viable in soil for up to 40 years
Answer
find out the number of moles and use the molar ratio (numbers in front of formulas (in this case they are all 1) to determine how many moles of each product you are going to get theoretically
n=m/M is the equation to use to get moles here
30.8 gm/32.04 g/mol=0.9612 moles of the methanol and also of the formaldehyde so
0.9612 moles of the formaldehyde x molar mass (M) 30.73 g/mol= 29.54 gm which is the theoretical yield you already have the actual yield of 24.7 gm
then divide the actual by the theoretical to get the % yield which is 83.6%
Explanation: