Answer:
The frictional force between the tire made with the road
Explanation:
This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is due to friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.
Answer:
There is no experiment to prove that you are in motion
Explanation:
A frame of reference which has constant velocity is known as an inertial frame of reference. Motion is relative. One can detect one's motion only when one observes change in position with respect to a fixed body.
Thus, if you are in a spaceship moving at a constant speed in a straight line and unable to look outside, you would not be able to prove that you are moving. Everything within the spaceship would have same speed. If you will throw any object within the spaceship, then the parameters measured by you would also not show that the spaceship is in motion.
Answer:
Cool question! First step is to find the time taken to fall
57
m
, then to find the horizontal velocity needed to cover
24
m
in that time. In this case the answer is
7.0
m
s
−
1
.
Explanation:
This is a less typical projectile motion question, but it's still projectile motion. This means the horizontal and vertical directions can be considered separately. We assume that the initial vertical velocity,
u
y
=
0
m
s
−
1
, and we are trying to find the required initial horizontal velocity,
u
x
.
To find the time taken to fall
57
m
:
s
=
u
t
+
1
2
a
t
2
Since
u
=
0
, we can rearrange this to:
t
=
√
2
s
a
=
√
2
⋅
57
9.8
=
3.41
s
The horizontal velocity will be constant (ignoring air resistance), so to cover
24
m
in
3.41
s
will be given by:
v
=
s
t
→
u
x
=
24
3.41
=
7.0
m
s
−
1
Answer link
Answer:
the waves will appear horizontally on the florescent screen because the y-plates have been removed