Ok so I’m going to break it up so it’s a bit easier to read through:
The colours are from the different rocks and minerals that make up the sand.
The little fragments of rock come from for example surrounding mountains.
It could also because sand is simply the product from erosion of the rocks rubbing each other under the action of the waves.
So if the bottom of the ocean is made of black lava for example in Hawaii, there’s a good chance of the sand being black.
In California, the sand usually looks white because it has minerals like quartz and pieces of shell that are made of calcium carbonate.
Hope this helps :)
Answer:
Genotype of parents is CC and Cc
Explanation:
Please see the attachment
Answer:
0.005 M
Explanation:
Given data:
volume of sample solution ( volume of D ) = 5.0 mL
volume of added stock solution ( V1 ) = 5.0 mL
concentration of added stock solution ( N1 ) = 0.02 M
Total volume of concentration ( V2 )= 10 mL = ( 5.0 mL + 5.0mL)
concentration of Total volume of sample ( C2 ) = 0.01
N2 = ( N1V1 ) / V2
= ( 0.02 * 5 ) / 10 = 0.01 m
absorbance of sample solution ( A1 ) = 0.10
absorbance of additional sample solution ( A2 ) = 0.20
attached below is the remaining part of the detailed solution
Answer:
Here's what I get
Explanation:
3. Molar concentration by formula.

(i) Comparison of molar concentrations
The formula gives a calculated value of 0.5302 mol·L⁻¹.
Dimensional analysis gives a calculated value of 0.1767 mol·L⁻¹.
The first value is three times the second.
It is wrong because the formula assumes that the acid supplies just enough moles of H⁺ to neutralize the OH⁻ from the NaOH.
Instead, I mol of H₃PO₄ provides 3 mol of H⁺, so your calculated concentration is three times the true value.
(ii) When is the formula acceptable?
The formula is acceptable only when the molar ratio of acid to base is 1:1.
Examples are
HCl + NaOH ⟶ NaCl + H₂O
H₂SO₄ + Ca(OH)₂ ⟶ CaSO₄ + 2H₂O
H₃PO₄ + Al(OH)₃ ⟶ AlPO₄ + 3H₂O