Answer:
The chlorine atom (or atoms) is covalently bonded by a shared pair of electrons to the other element.
Explanation:
Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3
You would use this number, 6.02×1023 (Avogadro's number) to convert from particles, atoms, or molecules to moles. Whenever you go to the mole, divide by Avogadro's number. When you go to the unit from moles, multiply by Avogadro's number.
At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
<h3>
What is
Avogadro's law?</h3>
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."
It is expressed as;
V₁/n₁ = V₂/n₂
Given the data in the question;
- Initial amount of gas n₁ = 2moles
- Initial volume v₁ = 13.9L
- Final amount of gas n₁ = 3moles
V₁/n₁ = V₂/n₂
V₁n₂ = V₂n₁
V₂ = V₁n₂ / n₁
V₂ = (13.9L × 3moles) / 2moles
V₂ = 41.7molL / 2mol
V₂ = 20.85L
At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
Learn more about Avogadro's law here: brainly.com/question/15613065
#SPJ1
Answer:

Explanation:
We need to use the formula for heat of vaporization.

Identify the variables.
- The heat absorbed by the evaporating water is the <u>latent heat of vaporization. </u>For water, that is 2260 Joules per gram.
- Q is the energy, in this problem, 50,000 Joules.
- m is the mass, which is unknown.

Substitute the values into the formula.

We want to find the mass. We must isolate the variable, m.
m is being multiplied by 2260 J/g. The inverse operation of multiplication is division. Divide both sides by 2260 J/g.


Divide. Note that the Joules (J) will cancel each other out.


Round to the nearest whole number. The 1 in the tenth place tells us to leave the number as is.

The mass is about 22 grams, so choice B is correct.