Answer:
ΔL =0. 000312 m
Explanation:
Given that
At room temperature ( T = 25 ∘C) ,L= 1 m

So the length at 13.0 ∘C above room temperature


L=1.000312 m
So the change in length
ΔL = 1.000312 - 1.0000 m
ΔL =0. 000312 m
At r = 0.766 R the magnetic field intensity will be half of its value at the center of the current carrying loop.
We have a circular loop of radius ' r ' carrying current ' i '.
We have to find at what distance along the axis of the loop is the magnetic field one-half its value at the center of the loop.
<h3>What is the formula to calculate the
Magnetic field intensity due to a current carrying circular loop at a point on its axis?</h3>
The formula to calculate the magnetic field intensity due to a current carrying ( i ) circular loop of radius ' R ' at a distance ' x ' on its axis is given by -

Now, for magnetic field intensity at the center of the loop can calculated by putting x = 0 in the above equation. On solving, we get -

Let us assume that the distance at which the magnetic field intensity is one-half its value at the center of the loop be ' r '. Then -




r = 0.766R
Hence, at r = 0.766 R - the magnetic field intensity will be half of its value at the center of the current carrying loop.
To solve more questions on magnetic field intensity, visit the link below-
brainly.com/question/15553675
#SPJ4
If you give it unbalanced force it would go up and if you can't give it enough it will stay a balanced force
Answer:
293.7 degrees
Explanation:
A = - 8 sin (37) i + 8 cos (37) j
A + B = -12 j
B = a i+ b j , where and a and b are constants to be found
A + B = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
- 12 j = (a - 8 sin (37) ) i + ( 8cos(37) + b ) j
Comparing coefficients of i and j:
a = 8 sin (37) = 4.81452 m
b = -12 - 8cos(37) = -18.38908
Hence,
B = 4.81452 i - 18.38908 j ..... 4 th quadrant
Hence,
cos ( Q ) = 4.81452 / 12
Q = 66.346 degrees
360 - Q = 293.65 degrees from + x-axis in CCW direction