Answer:
Remove a H2 molecule from the left side of the equation.
Explanation:
i took the quiz and got it right
<span>Answer: 0.00649M
The question is incomplete,
</span>
<span>You are told that the first ionization of the sulfuric acid is complete and the second ionization of the sulfuric acid has a constant Ka₂ = 0.012
</span>
<span>
With that you can solve the question following these steps"
</span>
<span>1) First ionization:
</span>
<span>
H₂SO₄(aq) --> H⁺ (aq) + HSO₄⁻ (aq)
Under the fully ionization assumption the concentration of HSO4- is the same of the acid = 0.01 M
2) Second ionization
</span>
<span>HSO₄⁻ (aq) ⇄ H⁺ + SO₄²⁻ with a Ka₂ = 0.012
</span>
<span>Do the mass balance:
</span>
<span><span> HSO₄⁻ (aq) H⁺ SO₄²⁻</span>
</span>
<span /><span /><span> 0.01 M - x x x
</span><span>Ka₂ = [H⁺] [SO₄²⁻] / [HSO₄⁻]</span>
<span /><span>
=> Ka₂ = (x²) / (0.01 - x) = 0.012
</span><span />
<span>3) Solve the equation:
</span><span>x² = 0.012(0.01 - x) = 0.00012 - 0.012x</span>
<span /><span>
x² + 0.012x - 0.0012 = 0
</span><span />
<span>Using the quadratic formula: x = 0.00649
</span><span />
<span>So, the requested concentratioN is [SO₄²⁻] = 0.00649M</span>
Answer:
true mass is based on gravity
Answer:
The number of copper atoms 12.405 ×10²³ atoms.
The number of silver atoms 13.13 ×10²³ atoms.
Beaker B have large number of atoms.
Explanation:
Given data:
In beaker A
Number of moles of copper = 2.06 mol
Number of atoms of copper = ?
In beaker B
Mass of silver = 222 g
Number of atoms of silver = ?
Solution:
For beaker A.
we will solve this problem by using Avogadro number.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms in one mole of substance.
While we have to find the copper atoms in 2.06 moles.
So,
63.546 g = 1 mole = 6.022×10²³ atoms
For 2.06 moles.
2.06 × 6.022×10²³ atoms
The number of copper atoms 12.405 ×10²³ atoms.
For beaker B:
107.87 g = 1 mole = 6.022×10²³ atoms
For 222 g
222 g / 101.87 g/mol = 2.18 moles
2.18 mol × 6.022×10²³ atoms = 13.13 ×10²³ atoms