Answer:
part (a). 176580 J
part (b). 197381 J
Explanation:
Given,
- Density of the chain =

- Length of the chain = L = 60 m
- Acceleration due to gravity = g = 9.81

part (a)
Let dy be the small element of the chain at a distance of 'y' from the ground.
mass of the small element of the chain = 
Work done due to the small element,

Total work done to wind the entire chain = w

part (b)
- mass of the block connected to the chain = m = 35 kg
Total work done to wind the chain = work done due to the chain + work done due to the mass

Answer:
Specific heat of water is 4.186 J/g/C. The heat required to raise the temperature by
is
Here is mass of water being heated, specific heat of water and change in temperature.
Here .
Heat energy required is
Explanation:
Answer:

Explanation:
a. Internal energy and the relative specific volume at
are determined from A-17:
.
The relative specific volume at
is calculated from the compression ratio:

#from this, the temperature and enthalpy at state 2,
can be determined using interpolations
and
. The specific volume at
can then be determined as:

Specific volume,
:

The pressures at
is:

.The thermal efficiency=> maximum temperature at
can be obtained from the expansion work at constant pressure during 

b.Relative SV and enthalpy at
are obtained for the given temperature with interpolation with data from A-17 :
Relative SV at
is

=
Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

Hence, the thermal efficiency is 0.563
c. The mean relative pressure is calculated from its standard definition:

Hence, the mean effective relative pressure is 674.95kPa
On an approximate scale, A child breaths 20 times a minute as compared to only 12 to 16 in resting phase of an Adult.
So, In 60 minutes (1 hour), They breathe = 20 * 60 = 1200
In 24 hours (1 day), They breathe = 1200 * 24 = 28,800
In short, Your Answer would be: 28,800
Hope this helps!