Viruses are microscopic organisms that exist almost everywhere on earth. They can infect animals, plants, fungi, and even bacteria.
Sometimes a virus can cause a disease so deadly that it is fatal. Other viral infections trigger no noticeable reaction.
A virus may also have one effect on one type of organism, but a different effect on another. This explains how a virus that affects a cat may not affect a dog.
Viruses vary in complexity. They consist of genetic material, RNA or DNA, surrounded by a coat of protein, lipid (fat), or glycoprotein. Viruses cannot replicate without a host, so they are classified as parasitic.
They are considered the most abundant biological entity on the planet.
Answer:
Explanation:
Given
mass of boy=36 kg
length of swing=3.5 m
Let T be the tension in the swing
At top point 
where v=velocity needed to complete circular path
Th-resold velocity is given by 

So apparent weight of boy will be zero at top when it travels with a velocity of 
To get the velocity at bottom conserve energy at Top and bottom
At top 
Energy at Bottom 
Comparing two as energy is conserved



Apparent weight at bottom is given by

Answer:
0.146 m/s
Explanation:
We can see it in the pic.
The acceleration of gravity on Jupiter is listed as <em>24.79 m/s²</em> .
That's roughly 2.53 times its value on Earth. So if you weigh, let's say,
130 pounds on Earth, then you would weigh about 328 pounds on Jupiter.