Answer:
An aircraft, flying in the vicinity of 18,000 ft altitude from west to east over the US at 12 Z today, will __LOSE___ altitude if the altimeter is not corrected
Answer:
22 N upward
Explanation:
From the question,
Applying newton's second law of motion
F = m(v-u)/t....................... Equation 1
Where F = Average force exerted by the ground on the ball, m = mass of the baseball, v = final velocity, u = initial velocity, t = time of contact
Note: Let upward be negative and downward be positive
Given: m = 0.14 kg, v = -1.00 m/s, u = 1.2 m/s, t = 0.014 s
Substitute into equation 1
F = 0.14(-1-1.2)/0.014
F = 0.14(-2.2)/0.014
F = 10(-2.2)
F = -22 N
Note the negative sign shows that the force act upward
Answer:
y = 2.196 m
Explanation:
Mass, m = 76 kg
distance from axis of rotation, x = 0.38 m
Second Force, F = 129 N
moment arm of the second force, y = ?
Now, equating moments for the equilibrium
So,
m g × x = F x y
76 x 0.38 x 9.81 = 129 x y
y = 2.196 m
Hence, the length of the moment arm is equal to 2.196 m.
Answer:
Controlled braking
Explanation:
CONTROLLED BRAKING occur in a situation where a person or an individual driving a vehicle releases the brake and slowly apply smooth as well as firmly pressure on the brake without the wheels been locked which is why CONTROLLED BRAKING are often used for emergency stops by drivers reason been that it helps to reduce speed when driving as fast as possible while the driver maintain the steering control of the vehicle.
Therefore the form of braking which is used to bring a vehicle to a smooth stop by applying smooth,steady pressure to the brake is called CONTROLLED BRAKING.
Answer:
A=0.80
Explanation:
a=2×100/time^2. a=2×100/15.86^2. = a=0.80