Answer:
I think its distance
Explanation:
when measuring how far a p.o art u can use mm
The force of friction is given by:
f = μR, where μ is the friction coefficient and R is the reaction force, which will be equal to the weight.
100 = μ x 130
μ = 0.77
The coefficient of static friction is 0.222
Explanation:
In order for the car to remain in circular motion, the frictional force must be able to provide the necessary centripetal force. Therefore, the car will start skidding when the two forces are equal:

where the term on the left is the frictional force, while the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the car
g is the acceleration of gravity
v is the speed of the car
r is the radius of the track
In this problem, we have:
r = 564 m
v = 35 m/s

And re-arranging the equation for
, we can find the coefficient of static friction:

Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
1350kgm/s
Explanation:
Given parameters:
Mass of Sam = 75kg
Velocity = 18m/s
Unknown:
Momentum = ?
Solution:
Momentum is the property of a moving body with respect to its mass and velocity.
Objects in motion have momentum. The more the velocity of a body, the more its momentum. Also, the more the mass of an object, the more momentum it possess.
Momentum is a function of the mass and the velocity of a body
Momentum = mass x velocity
Momentum = 75 x 18 = 1350kgm/s
learn more:
Conservation of momentum brainly.com/question/2990238
#learnwithBrainly
I haven't worked on Part-A, and I don't happen to know the magnitude of the gravitational force that the Sun exerts on the Earth.
But whatever it is, it's exactly, precisely, identical, the same, and equal to the magnitude of the gravitational force that the Earth exerts on the Sun.
I think that's the THIRD choice here, but I'm not sure of that either.