Answer:
The momentum of an object is defined as the mass of the object times the velocity of the object, as P = m*v.
So the equipment needed would be:
Something to measure the mass of the object, like a balance.
Something to measure the speed of the object, like a doppler radar, or a simpler thing may be a cronometer, with that you can measure the amount of time that the object needs to travel a given distance, and with that you can obtain the speed of the object.
Now you can notice that speed is different than velocity, this is true, velocity is a vector, so this has a direction, then you need something to fix the direction in which the object moves, in this way you can determine the velocity.
Answer:
Newton believed that mass tells gravity how much force to exert. Einstein believed that mass tells space-time how to curve.
Explanation:
Isaac Newton believed that bodies on earth had a force of gravity pulling them down as a result of their masses.
Albert Einstein believed that the bodies were not pulled down but were moving around in a circular sphere/manner.
This confirms Newton believing that mass tells gravity how much force to exert and Einstein believing that mass tells space-time how to curve.
Answer:
rad/s
Explanation:
The wave function is:
where :
k = wave number
x = position of a point on the wave
= angular frequency
t = time
What is another way to express the angular frequency (omega)
Angular frequency (omega) can be express as :
rad/s ( i.e one repetition that it takes to repeats itself)
Answer:

Explanation:
The torque applied on an object can be calculated by the following formula:

where,
T = Torque
F = Applied Force
r = radius of the wheel
For car wheel:

For truck wheel:

Dividing both:

for the same force applied on both wheels:

where,
rt = radius of the truck steering wheel = 0.25 m
rc = radius of the car steering wheel = 0.19 m
Therefore,

