Explanation:
The n in Bohr model of the atom is principle quantum number.
The Rydberg n integer stats represent electron orbits at various integral distances from the atom in Bohr's conceptualization of the atom. Subsequent models discovered that the values for n1 and n2 match the two orbitals ' principle quantum numbers.
Answer:
2.13 × 10²² moles
Explanation:
Relation between Mole and Mass is,
Mole = Mass / M.Mass
Putting values,
Mole = 2.3 × 10²⁴ g / 107.87 g/mol
Mole = 2.13 × 10²² moles
Answer:
The statement is considered to be true
Explanation:
The statement is true because when elements chemically combine, there are interactions between their valence electrons, causing the two elements to be bonded together to form what is known as a compound.
Compounds can only be formed from interactions between two or more elements. examples include:
Hydrogen + Oxygen = H2O (water)
Sodium + Chlorine = NaCl
Note that if atoms of the same element combine, what is formed is a molecule, not a compound. Some atoms usually do this to attain stability. examples include = O2 H2 and N2. They are oxygen molecule, hydrogen molecule, and nitrogen molecule respectively.
Compounds are only formed when different elements combine to attain electronic stability.
Answer: Mechanical energy depends on the motion or position of an object.
Explanation:
Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. Mechanical energy can be either kinetic energy (energy of motion) or potential energy (stored energy of position).
pH=6.98
Explanation:
This is a very interesting question because it tests your understanding of what it means to have a dynamic equilibrium going on in solution.
As you know, pure water undergoes self-ionization to form hydronium ions, H3O+, and hydroxide anions, OH−.
2H2O(l]⇌H3O+(aq]+OH−(aq]→ very important!
At room temperature, the value of water's ionization constant, KW, is equal to 10−14. This means that you have
KW=[H3O+]⋅[OH−]=10−14
Since the concentrations of hydronium and hydroxide ions are equal for pure water, you will have
[H3O+]=√10−14=10−7M
The pH of pure water will thus be
pH=−log([H3O+])
pH=−log(10−7)=7
Now, let's assume that you're working with a 1.0-L solution of pure water and you add some 10