B.
Delta G is negative and Delta S is positive.
Answer:
Yes
Explanation:
Yes, there are many energy forces that directly affect the formation of rocks and other substances. The Sun itself provides both energies in the form of heat/radiation and magnetic energy. Heat can get so intense when combined with pressure from being so far underground that it causes rocks to melt and become magma, which combines with other minerals and forms new types of rocks when they cool in the future. Magnetic energy helps push and pull the waves and wind on Earth which ultimately break down rocks into sand over the years.
Answer:
Ecel =0,04 V
Explanation:
Apply the Nerst equation,
Ecel= Ecelº - (RT/nF)*lnQ
where R=8,314 J/molK, T=25ºC=298K and F =96 485 Coulombs/mol e- and n=number of moles of electrons transferred in the balanced equation. Q is cocient of products and reactives power to respective coefficients, if is a gas apply partial pressure
Write the semiequation redox and verify the numbers of electron for balance. In this case you don't need to change nothing
2Cl−(aq)→Cl2(g) + 2e-
<u>2CO3+(aq) + 2e-→2CO2+(aq)</u>
2Cl−(aq) + <u>2CO3+(aq) </u>→<u>2CO2+(aq) + </u>Cl2(g)
Hence
Ecel= 0.483 V - 0.013Ln ([CO2+]^2*PCl2] / [CO3+]^2*[Cl-]^2)
Ecel= 0.483 V - 0.013Ln ([0.205]^2 * 7.3] / [0.19]^2*[0.144]^2)
Ecel =0,04 V
Answer:
The
for
formation is
.
Explanation:


![[Fe(NO_3)_3]=0.02 M=[Fe^{3+}]](https://tex.z-dn.net/?f=%5BFe%28NO_3%29_3%5D%3D0.02%20M%3D%5BFe%5E%7B3%2B%7D%5D)
Concentration of ferric ion = ![[Fe^{3+}]=0.02 M](https://tex.z-dn.net/?f=%5BFe%5E%7B3%2B%7D%5D%3D0.02%20M)
Volume of ferric solution = 3.0 mL = 0.003 L
Moles of ferric ion 
1 mL = 0.001 L

![[NaNCS]=0.002 M=[NCS^-]](https://tex.z-dn.net/?f=%5BNaNCS%5D%3D0.002%20M%3D%5BNCS%5E-%5D)
Concentration of
ion = ![[NCS^{-}]=0.002 M](https://tex.z-dn.net/?f=%5BNCS%5E%7B-%7D%5D%3D0.002%20M)
Volume of
ion solution = 3.0 mL = 0.003 L
Moles of
ion= 
Volume of nitric acid solution = 10 mL = 0.010 L
After mixing all the solution the concentration of ferric ion and
ion will change
Total volume of solution = 0.003 L + 0.003 L + 0.010 L = 0.016 L
Initial concentration of ferric ion before reaching equilibrium :
= 
Initial concentration of
ion before reaching equilibrium :
= 
![Fe^{3+}+NCS^-\rightleftharpoons [Fe(NCS)]^{2+}](https://tex.z-dn.net/?f=Fe%5E%7B3%2B%7D%2BNCS%5E-%5Crightleftharpoons%20%5BFe%28NCS%29%5D%5E%7B2%2B%7D)
Initially:
0.00375 M 0.000375 M 0
At equilibrium :
(0.00375-x) (0.000375-x) x
Equilibrium concentration of ![[Fe(NCS)]^{2+}=x=2.5\times 10^{-4} M](https://tex.z-dn.net/?f=%5BFe%28NCS%29%5D%5E%7B2%2B%7D%3Dx%3D2.5%5Ctimes%2010%5E%7B-4%7D%20M)
The expression of equilibrium constant for formation
is given by :
![K_c=\frac{[[Fe(NCS)]^{2+}]}{[Fe^{3+}][NCS^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5B%5BFe%28NCS%29%5D%5E%7B2%2B%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5BNCS%5E-%5D%7D)



The
for
formation is
.