<span>The mechanical energy is conserved.
I hope this helps, good luck! :)</span>
An object that's moving doesn't necessarily change its speed or acceleration. Also, the force applied to it doesn't need to change ... in fact, a moving object doesn't need ANY force applied to it in order to keep moving.
But any moving object WILL have a change in its position ... THAT's how you know it's moving, and that's WHY you say "It's moving !". (choice-B)
K=0.5 mu×u
K=2200J no matter the direction
So, the angle between two vectors having equal magnitude is equal to 120º.
Explanation:
<h2>:) Correct me if I'm wrong...</h2>
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1