Answer:
The new partial pressures after equilibrium is reestablished:



Explanation:

At equilibrium before adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
The expression of an equilibrium constant is given by :


At equilibrium after adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
Total pressure of the system = P = 263.0 Torr




At initail
(13.2) Torr (32.8) Torr (13.2) Torr
At equilbriumm
(13.2-x) Torr (32.8-x) Torr (217.0+x) Torr


Solving for x;
x = 6.402 Torr
The new partial pressures after equilibrium is reestablished:



<u>Answer:</u> The true statement is iron can reduce
to gold metal
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.

Metal A is more reactive than metal B.
We are given:
Iron can reduce copper, silver can reduce gold, sodium can reduce iron and copper can reduce silver metal.
The increasing order of reactivity thus follows:

where, sodium is most reactive and gold is least reactive
For the given options:
<u>Option 1:</u> Copper cannot easily reduce sodium ion to sodium metal because it is less reactive.

<u>Option 2:</u> Iron cant easily reduce gold ion to gold metal because it is more reactive.

<u>Option 3:</u> Silver cannot easily reduce iron ion to iron metal because it is less reactive.

Hence, the true statement is iron can reduce
to gold metal
These are called subscript number.
That is the number below the normal line of test are called subscript number.
This number indicate the indicate the number of atoms of the element present in the chemical formula.
In both of these C₆H₁₂O₆ and H₂O, the number written below the line of the text are called subscript numbers.
Answer : Option A) Translation
Explanation : A composition of reflections over parallel lines is the same as a <u>Translation.</u>
To identify if the composition of reflections over parallel lines are same as translation or not?
We can check using a picture of some shape in the plane. Place the picture on the right side of two vertical parallel. Now, we can see the reflected the shape over the nearest parallel line, then check the reflection over the other parallel line. We see that the shape winds up in the same orientation, like it was just shifted over to the right. Hence, it is translation.
The <span>12C</span><span> isotope. Hope this helps.</span>