Answer:
Do heavier cars really use more gasoline? Suppose a car is chosen at random. Let x be the weight of the car (in hundreds of pounds), and let y be the miles per gallon (mpg)
Explanation:
Answer:
minimum length of a surface crack is 15.043 mm
Explanation:
given data
strain fracture toughness K = 78 MPa
tensile stress = 345 MPa
Y = 1.04
to find out
minimum length of a surface crack
solution
we find here length of critical interior flaw from formula that is
α =
....................1
put here value we get
α = 
α = 15.043 mm
so minimum length of a surface crack is 15.043 mm
Answer:
a)5.28 Å , b)3.73 Å , c)3.048 Å
Explanation:
the atoms are situated only at the corners of cube.Each and every atom in simple cubic primitive at the corner is shared with 8 adjacent unit cells.
Therefore, a particular unit cell consist only 1/8th part of an atom.
The lattice constant of a simple cubic primitive cell is 5.28 Å
We know formula of distance,
d = 
a)(100)
a=5.28 Å
Distance =
=5.28 Å
b)(110)
Distance =
= 3.73 Å
c)(111)
Distance=
= 3.048 Å
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
The solid rod BC has a diameter of 30 mm and is made of an aluminum for which the allowable shearing stress is 25 MPa. Rod AB is hollow and has an outer diameter of 25 mm; it is made of a brass for which the allowable shearing stress is 50 MPa.