To solve this problem we will apply the concepts related to resistance as a function of temperature, product of the relationship between the squared voltage and the power. Mathematically this is,

Here,
R = Resistance (At function of temperature)
v = Voltage
P = Power
Then we have,
R at 140°C (7 times room temperature),


The relationship between normal temperature and increased temperature would then be given by,




Therefore the correct value of the group of answer is 1350
This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!
Refer to the diagram shown below.
The initial KE (kinetic energy) of the system is
KE₁ = (1/2)mu²
After an inelastic collision, the two masses stick together.
Conservation of momentum requires that
m*u = 2m*v
Therefore
v = u/2
The final KE is
KE₂ = (1/2)(2m)v²
= m(u/2)²
= (1/4)mu²
= (1/2) KE₁
The loss in KE is
KE₁ - KE₂ = (1/2) KE₁.
Conservation of energy requires that the loss in KE be accounted for as thermal energy.
Answer: 1/2
Objects have the same velocity only if they are moving at the same speed and in the same direction. Objects moving at different speeds, in different directions, or both have different velocities.
<span>
the horizontal velocity would be equal to
Vh = sin (40) /60
= 0.74 * 60
= 44
</span>
the Vertical velocity would be equal to
<span>Vv = cos(40) * 60
=40</span>