This shifts the star’s spectral lines toward the blue end of the spectrum. If the star is moving away from us, it’s waves are effectively stretched out when they reach earth, increasing their wavelength. This shifts the star’s spectral lines toward the red end of the spectrum.
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.
Answer:
If efficiency is .22 then W = .22 * Q where Q is the heat input
Heat Input Q = 2510 / .22 = 11,400 J
Heat rejected = 11.400 - 2510 = 8900 J of heat wasted
Also, 8900 J / (4.19 J / cal) = 2120 cal
In Electromagnetic spectrum, X-rays has very high frequency but gamma-rays has more than that. If you consider cosmic rays as an electromagnetic wave, then it would be highest energetic and has highest frequency.
In short, Your Answer is "Cosmic rays"
Hope this helps!
there are 3 atoms in each silver sulfide