To solve this process it is necessary to consider the concepts related to the relations between pressure and temperature in an adiabatic process.
By definition the relationship between pressure and temperature is given by

Here
P = Pressure
T = Temperature
The ratio of specific heats. For air normally is 1.4.
Our values are given as,

Therefore replacing we have,


Solving for 


Therefore the maximum theoretical pressure at the exit is 
C. is the answer because acceleration is the change in velocity in time while velocity is speed with a direction
Well if the boat initially at rest accelerates at uniformly at 4.0 m/s (squared) then it would be best to muitlply it so 4.0 squared equals 2 by multiplying that by 7.0 your answer would be 14 s
Answer:
x = 727.5 km
Explanation:
With the conditions given using trigonometry, we can find the tangent
tan θ = CO / CA
With CO the opposite leg and CE is the adjacent leg which is the distance from the Tierral to Sun
D =150 10⁶ km (1000m / 1 km)
D = 150 10⁹ m.
We must take the given angle to radians.
1º = 3600 arc s
π rad = 180º
θ = 1 arc s (1º / 3600 s arc) (pi rad / 180º) =
θ = 4.85 10⁻⁶ rad
That angle is extremely small, so we can approximate the tangent to the angle
θ = x / D
x = θ D
x = 4.85 10-6 150 109
x = 727.5 103 m
x = 727.5 km