Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K
Answer:
Coefficient of 
Coefficient of
=8
Explanation:
We are given that a reaction in which
reacts with 
We have to find the coefficient of each reactants in balanced reaction

Coefficient is defined the constant value multiplied with a reactant in a reaction.
Coefficient of
=3
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of KOH=2
Hence, Coefficient of
and coefficient of 
Answer:
5010J
Explanation:
The following data were obtained from the question:
Mass (m) = 15g
Heat of fusion (ΔHf) = 334J/g
Heat required (Q) =..?
The heat energy required to melt the ice can be obtained as follow:
Q = m·ΔHf
Q = 15 x 334
Q = 5010J
Therefore, the heat energy required to melt the ice is 5010J.
Answer:
The order is:
F >Be >Li >Ba
Explanation:
Electrons are held in atoms by their attraction to the nucleus which means that to remove an electron from the atom energy is needed.
The ionization energy is the minimum energy necessary to remove an electron from an atom in the gas phase and ground state, the electron removed being the outermost, that is, the furthest from the nucleus. The further away the electron is from the nucleus, the easier it is to remove it, that is, the less energy is needed.
By increasing the atomic number of the elements of the same group, the nuclear attraction on the outermost electron decreases, since the atomic radius increases. Then the ionization energy decreases. In other words, in a group it decreases from top to bottom because the size of the atom increases and it is easier to remove an external electron.
By increasing the atomic number of the elements of the same period, the nuclear attraction on the outermost electron increases, since the atomic radius decreases. Therefore, in a period, as the atomic number increases, the ionization energy increases. In summary, in a period it increases from left to right as the effective nuclear charge increases and it increases thanks to the decrease in the size of the atom.
Taking these considerations into account, the order is:
<u><em>F >Be >Li >Ba</em></u>
Answer:
its none above
Explanation:
food webs have arrows that show the flow of energy from one orhganism to the next
bar graphs have bars and numbers and diagrams have words and pictures so it D