Answer:
They will sometimes crash into other plates in the process and will rub while they are moving creating earthquakes
Explanation:
Answer:
conservative
Explanation:
Nonconservative force is the force that depends on a path, however conservative does not depend on a path and it is not associated with the potential energy. When the work is done by an unconservative force, mechanical energy is added or removed. Friction is the best example for a non-conservative force. When these non-conservative forces are acting, the mechanical energy changes but these are not preserved.
hope this helped!
If a negatively charged object is used to charge a neutral object by induction, then the neutral object will acquire a positive charge. And if a positively charged object is used to charge a neutral object by induction, then the neutral object will acquire a negative charge.
Answer: The force needed is 140.22 Newtons.
Explanation:
The key assumption in this problem is that the acceleration is constant along the path of the barrel bringing the pellet from velocity 0 to 155 m/s. This means the velocity is linearly increasing in time.
The force exerted on the pellet is
F = m a
In order to calculate the acceleration, given the displacement d,

we will need to determine the time t it took for the pellet to make the distance through the barrel of 0.6m. That time can be determined using the average velocity of the pellet while traveling through the barrel. Since the velocity is a linear function of time, as mentioned above, the average is easy to calculate as:

This value can be used to determine the time for the pellet through the barrel:

Finally, we can use the above to calculate the force:

<u>Question:</u>
You are working on an experiment involving a very strong permanent magnet, and your data suggests that your magnet's field suddenly decreased during some interval in time. Such a decrease could have been caused by the magnet
A. Having overheated substantially
B. Being hit hard
C. Both A and B
D. Being grounded out
<h3><u>Answer:</u></h3>
A decrease in magnetic field of the permanent magnet have been caused by the magnet having overheated substantially or sharp impacts by being hit hard.
Option c
<h3><u>Explanation: </u></h3>
Permanent magnets are ferromagnetic materials with its magnetic domains aligned and grouped together in the same direction. These atomic domains maintain their directionality and hence a permanent magnet provides persistently strong magnetic fields without quick weakening. Some factors may lead to demagnetization or else a consistent reduction in magnetic strength.
Overheating a magnetic material realigns the magnetic domain regions and affects its directionality. When it reaches to a temperature defined as Curie temperature, varying with each material; the substance is no more a magnet due to complete randomness in the domain structure. As the temperature decreases and approaches the room temperature, magnetic field appears but is less in strength. Sudden impacts due to hitting may lead to random realignment of magnetic domains and thus decrease its magnetic strength.