Answer:
R = 5.28 103 km
Explanation:
The definition of density is
ρ = m / V
V = m /ρ
Where m is the mass and V the volume of the body
The volume of a sphere is
V = 4/3 π r³
Let's replace
4/3 π r³ = m / ρ
R =∛ ¾ m / ρ π
The mass of the planet is
M = 5.5 Me
R = ∛ ¾ 5.5 Me /ρ π
Let's reduce the density to SI units
ρ = 1.76 g / cm³ (1 kg / 10³ g) (10² cm / 1 m)³
ρ = 1.76 10³ kg / m³
Let's calculate
R = ∛ ¾ 5.5 5.97 10²⁴ / (1.76 10³ pi)
R = ∛ 0.14723 10²¹
R = 0.528 10⁷ m
R = 0.528 104 km
R = 5.28 103 km
<span>the speed of something in a given direction. so i think none of these</span>
Answer:
7.99 or 8 depends where you round.
Explanation:
Distance divided by time so 1246/156=7.98717948718
Answer:
The potential energy stored in the spring is 0.018 J.
Explanation:
Given;
spring constant, k = 90 N/m
extension of the spring, x = 2 cm = 0.02 m
The potential energy stored in the spring is calculated as;
U = ¹/₂kx²
where;
U is the potential energy stored in the spring
Substitute the given values in the equation above;
U = ¹/₂ x 90 N/m x (0.02 m)²
U = 0.018 J
Therefore, the potential energy stored in the spring is 0.018 J.
Answer:
The smallest possible beat frequency when B and C are sounded together is 3 Hz
Explanation:
Given;
the beat frequency of A and B = 2 Hz
the beat frequency of A and C = 5 Hz
Beat frequency is equal to the difference in frequency of the two notes that interfere to produce the beats.

Therefore, the smallest possible beat frequency when B and C are sounded together is 3 Hz