Answer: B2H6 (g) + 3O2 (g) → B2O3 (s) + 3H2O (g) (ΔH = -2035 kJ/mol) 3H2O (g) → 3H2O (l) (ΔH = -132 kJ/mol) 3H2O (l) → 3H2 (g) + (3/2) O2 (g) (ΔH = 858 kJ/mol)
Explanation: ??
c) the salt solubility decreases with temperature.
Salts usually dissolve in water at a given temperature. When water cannot dissolve anymore salt at that same temperature, it is known as a saturation point. With most substances the solubility increases with increase in temperature. Same is the case for a salt like potassium nitrate. With increase in temperature the ability of it to dissolve in water increases. And so with decrease in temperature, the solubility decreases.
Answer:
1.67mol/L
Explanation:
Data obtained from the question include:
Mole of solute (K2CO3) = 5.51 moles
Volume of solution = 3.30 L
Molarity =?
Molarity is simply the mole of solute per unit litre of the solution. It can be expressed mathematically as:
Molarity = mole of solute /Volume of solution
Molarity = 5.51 mol/3.30 L
Molarity = 1.67mol/L
Therefore, the molarity of K2CO3 is 1.67mol/L
Answer: The answer can be found on CHEG
Explanation:
The answer would be D. This is because sulfur is on it's own, meaning one. while tri is a prefix for three so there are three oxygen atoms.