Answer:
Explanation:
Hello!
In this case, considering the partial Dalton's law of partial pressures, we can notice that the total pressure equals the pressure of steam and the pressure of hydrogen, which can be determined as shown below:
Thus, by using the ideal gas law, we can compute the moles of hydrogen as shown below:
Best regards!
Given what we know, we can confirm that if further increases in substrate concentration do not result in further increases in reaction rate, then an enzyme is likely saturated.
<h3>What does it mean for an enzyme to be saturated?</h3>
Enzymes work by binding to the substrate in specific zones of the enzyme. The zones are known as the active sites on enzymes. Since enzymes have a limited amount of these zones, once they are all bonded to a substrate, we can say that it is saturated.
Therefore, the saturation of enzymes allows us to explain how further increases in substrate concentration do not result in further increases in reaction rate.
To learn more about enzymes visit:
brainly.com/question/24811456?referrer=searchResults
Answer:
4 Co(s) + 3 O2(g) = 2 Co2O3(s)
Explanation:
Answer:
Explanation:
From the information given:
Mass of carbon tetrachloride = 5 kg
Pressure = 1 bar
The given density for carbon tetrachloride = 1590 kg/m³
The specific heat of carbon tetrachloride = 0.84 kJ/kg K
From the composition, the initial volume of carbon tetrachloride will be:
= 0.0031 m³
Suppose is independent of temperature while pressure is constant;
Then:
The change in volume can be expressed as:
However; the workdone = -PdV
W = - 7.6 J
The heat energy Q = Δ h
Q = 84 kJ
The internal energy is calculated by using the 1st law of thermodynamics; which can be expressed as;
ΔU = ΔQ + W
ΔU = 84 kJ + ( -7.6 × 10⁻³ kJ)
ΔU = 83.992 kJ