Answer:
B) 350 kg m/s
Explanation:
momentum or p is given by the equation p= mxv
We have the mass and velocity so we can use the equation directly
p= 72kg x 4.9 m/s
p= 352.8 kg m/s
Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Answer:

Explanation:
Let the linear charge density of the charged wire is given as

here we can use Gauss law to find the electric field at a distance r from wire
so here we will assume a Gaussian surface of cylinder shape around the wire
so we have

here we have


so we have
