1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mel-nik [20]
3 years ago
13

Kirchoff's Law states that, by the time current has returned to its source, all

Engineering
2 answers:
Alchen [17]3 years ago
6 0

Kirchoff's law  states that by the time current has reached to its source all voltage must be used.

<u>Explanation:</u>

Kirchoff's voltage law states that the algebraic sum of all the voltages across a closed loop is zero. As the circuit is a closed conducting path, no energy is lost.  ices All the voltage that is supplied from the voltage source is dropped at the devices in the circuit.

The potential difference maintained by the voltage source enables the flow of current across the circuit. As the supplied voltage drops at each elements of the circuit, all voltage is used by the time current has returned to the surface.

Alex17521 [72]3 years ago
4 0

Kirchoff's Law Kirchoff's Law states that, by the time current has returned to its source is explained in the following.

Explanation:

  • Kirchhoff's Current Law (KCL) is Kirchhoff's first law that deals with the conservation of charge entering and leaving a junction. ... In other words the algebraic sum of ALL the currents entering and leaving a junction must be equal to zero.
  • Kirchoff's laws apply for a given instant in time. So the voltages at a given moment around a loop will all sum to zero, or currents in a node sum to zero if you look at the instantaneous voltage and current. But they will be out of phase.
  • Kirchhoff Voltage Law states that ''The algebraic sum of all voltages (source voltage and voltage drops) is equal to zero around a close path''. This is called KVL ( Kirchhoff Voltage Law) equation. The source voltage is equal to the sum of all voltage drops.
  • Kirchhoff's Voltage Law (KVL) is Kirchhoff's second law that deals with the conservation of energy around a closed circuit path.
  • Kirchhoff's laws can be used to determine the values of unknown values like current, Voltage in the circuit. These laws can be applied on any circuit (with some limitation), and useful to find the unknown values in complex circuits and networks.

You might be interested in
Determine (a) the principal stresses and (b) the maximum in-plane shear stress and average normal stress at the point. Specify t
raketka [301]

Answer:

a) 53 MPa,  14.87 degree

b) 60.5 MPa  

Average shear = -7.5 MPa

Explanation:

Given

A = 45

B = -60

C = 30

a) stress P1 = (A+B)/2 + Sqrt ({(A-B)/2}^2 + C)

Substituting the given values, we get -

P1 = (45-60)/2 + Sqrt ({(45-(-60))/2}^2 + 30)

P1 = 53 MPa

Likewise P2 = (A+B)/2 - Sqrt ({(A-B)/2}^2 + C)

Substituting the given values, we get -

P1 = (45-60)/2 - Sqrt ({(45-(-60))/2}^2 + 30)

P1 = -68 MPa

Tan 2a = C/{(A-B)/2}

Tan 2a = 30/(45+60)/2

a = 14.87 degree

Principal stress

p1 = (45+60)/2 + (45-60)/2 cos 2a + 30 sin2a = 53 MPa

b) Shear stress in plane

Sqrt ({(45-(-60))/2}^2 + 30) = 60.5 MPa

Average = (45-(-60))/2 = -7.5 MPa

5 0
3 years ago
A steel bar is 150 mm square and has a hot-rolled finish. It will be used in a fully reversed bending application. Sut for the s
Xelga [282]

Answer:

See explanation

Explanation:

Given The bar is square and has a hot-rolled finish. The loading is fully reversed bending.

Tensile Strength

Sut: 600 MPa

Maximum temperature

Tmax: 500 °C

Bar side dimension

b: 150 mm

Alternating stress

σa: 100 MPa

Reliability

R: 0.999 Note 1.

Assumptions Infinite life is required and is obtainable since this ductile steel will have an endurance limit. A reliability factor of 99.9% will be used.

Solution See Excel file Ex06-01.xls.

1 Since no endurance-limit or fatigue strength information is given, we will estimate S'e based on the ultimate tensile strength using equation 6.5a.

S'e: 300 MPa = 0.5 * Sut

2 The loading is bending so the load factor from equation 6.7a is

Cload: 1

3 The part size is greater than the test specimen and the part is not round, so an equivalent diameter based on its 95% stressed area must be determined and used to find the size factor. For a rectangular section in nonrotating bending, the A95 area is defined in Figure 6-25c and the equivalent diameter is found from equation 6.7d

A95: 1125 mm2 = 0.05 * b * b Note 2.

dequiv: 121.2 mm = SQRT(A95val / 0.0766)

and the size factor is found for this equivalent diameter from equation 6.7b, to be

Csize: 0.747 = 1.189 * dequiv^-0.097

4 The surface factor is found from equation 6.7e and the data in Table 6-3 for the specified hot-rolled finish.

Table 6-3 constants

A: 57.7

b: -0.718 Note 3.

Csurf: 0.584 = Acoeff * Sut^bCoeff

5 The temperature factor is found from equation 6.7f :

Ctemp: 0.710 = 1 - 0.0058 * (Tmax - 450)

6 The reliability factor is taken from Table 6-4 for R = 0.999 and is

Creliab: 0.753

7 The corrected endurance limit Se can now be calculated from equation 6.6:

Se: 69.94 MPa = Cload * Csize * Csurf * Ctemp *

Creliab * Sprme

Let

Se: 70 MPa

8 To create the S-N diagram, we also need a value for the estimated strength Sm at 103 cycles based on equation 6.9 for bending loading.

Sm: 540 MPa = 0.9 * Sut

9 The estimated S-N diagram is shown in Figure 6-34 with the above values of Sm and Se. The expressions of the two lines are found from equations 6.10a through 6.10c assuming that Se begins at 106 cycles.

b: -0.2958 Note 4.

a: 4165.7

Plotting Sn as a function of N from equation 6.10a

N Sn (MPa)

1000 540 =aa*B73^bb

2000 440

4000 358

8000 292

16000 238

32000 194

64000 158

128000 129

256000 105

512000 85

1000000 70

FIGURE 6-34. S-N Diagram and Alternating Stress Line Showing Failure Point

10 The number of cycles of life for any alternating stress level can now be found from equation 6.10a by replacing σa for Sn.

At N = 103 cycles,

Sn3: 540 MPa = aa * 1000^bb

At N = 106 cycles,

Sn6: 70 MPa = aa * 1000000^bb

The figure above shows the intersection of the alternating stress line (σa = 100 MPa) with the failure line at N = 3.0 x 105 cycles.

8 0
3 years ago
Q1: The first option should always be to get out safely (RUN)
nekit [7.7K]

Answer:

Q1 true

Q2 true

And other I am confuse

6 0
2 years ago
Which of the following best describes the role of engineers
Fantom [35]

Problem Solvers

Explanation:

Engineers find problems in the world, and then they find solutions for them.

8 0
3 years ago
Explain why the failure of a garden hose occurred near its end and why the tear occurred along its length. Use numerical values
Nataliya [291]

Answer:

Most hydraulic systems develops pressure surges that may surpass settings valve. by exposing the hose surge to pressure above the maximum operating pressure will shorten the hose life.

Explanation:

Solution

Almost all hydraulic systems creates pressure surges that may exceed relief valve settings. exposing the hose surge to pressure above the maximum operating  pressure shortens the hose life.

In systems where pressure peaks are severe, select or pick a hose with higher maximum operating  pressure or choose a spiral reinforced hose specifically designed for severe pulsing applications.

Generally, hoses are designed or created to accommodate pressure surges and have operating pressures that is equal to 25% of the hose minimum pressure burst.

7 0
3 years ago
Other questions:
  • The kinetic energy correction factor depends on the (shape — volume - mass) of the cross section Of the pipe and the (velocity —
    11·1 answer
  • Technician A says that latent heat is hidden heat and cannot be measured on a thermometer. Technician B says that latent heat is
    12·1 answer
  • The uniform crate has a mass of 50 kg and rests on the cart having an inclined surface. Determine the smallest acceleration that
    10·1 answer
  • Plot da(t) if the output voltage of the converter pole-a is vaN(t)=Vd/2+0.85 Vd/2 sin(Ï1t), where Ï1=2Ï x 60 rad/s
    12·1 answer
  • A piston–cylinder device contains 0.78 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic
    11·1 answer
  • A wine aerator is a small, in-bottle, hand-held pour-through or decantor top device using the venturi effect for aerating the wi
    9·1 answer
  • Suggest how the following requirements might be rewritten in a
    8·1 answer
  • What are the environmental factors that cause the formation of rust?
    7·1 answer
  • A protocol is a set of rules or procedures, usually written, that should be followed in specific situations. Which of the follow
    12·1 answer
  • which acpi power state allows a system to start where it left off, but all other components are turned off? sleeping mechanical
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!