Answer:
- The name for the potassium oxide's structure is ionic.
Properties:
- High melting point.
- Soluble in water.
Explanation:
- The ionic structure it is formed by a cation (atom with positive charge) and an anion (atom with negative charge). In this case, potassium is the cation and the oxigen is the anion.
- Since potassium oxide is an ionic compound, it has a high melting point, because of the strong bonds. Also, it is soluble in polar solvents, like water, because its ions generate polarity in the molecule.
They use fans and air conditioning in the summer because its hot, which means they use energy and in the winter, there is no need because its cold so less energy.
Answer:
(molecular) 3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
(ionic) 3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
(net ionic) 3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Explanation:
The molecular equation includes al the species in the molecular form.
3 CaCl₂(aq) + 2 (NH₄)₃PO₄(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄Cl(aq)
The ionic equation includes all the ions (species that dissociate in water) and the species that do not dissociate in water.
3 Ca²⁺(aq) + 6 Cl⁻(aq) + 6 NH₄⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s) + 6 NH₄⁺(aq) + 6 Cl⁻(aq)
The net ionic equation includes only the ions that participate in the reaction and the species that do not dissociate in water. In does not include <em>spectator ions</em>.
3 Ca²⁺(aq) + 2 PO₄³⁻(aq) ⇄ Ca₃(PO₄)₂(s)
Explanation:
The answer is H2SO4 for sulphuric acid
Rutherford's Gold Foil Experiment proved the existence of a small massive center to atoms, which would later be known as the nucleus of an atom. Ernest Rutherford, Hans Geiger and Ernest Marsden carried out their Gold Foil Experiment to observe the effect of alpha particles on matter.