Answer:
Six electrons are transferred in the formation of Al₂O₃.
Explanation:
Aluminium metal and Oxygen react to form Al₂O₃ as,
2 Al + 3/2 O₂ → Al₂O₃
Oxidation number of Al on left hand side is zero, while than on right hand side in Al₂O₃ is +3. Means it has lost 3 electrons per one atom and six electrons per two atoms. Also, the oxidation number of O at left hand side in O₂ is zero, while that in Al₂O₃ it is -2 per atom and -6 per 3 atoms.
So, two Al atoms have lost 6 electrons and 3 O atoms have gained six electrons.
Hydrogen. Covalent bonds occur within each linear strand and strongly bond the bases, sugars, and phosphate groups (both within each component and between components). Hydrogen bonds occur between the two strands and involve a base from one strand with a base from the second in complementary pairing.
The independent variable is the variable being changed. In this case, the independent variable is the calculators. The dependent variable is essentially what you are looking for that <u>depends</u> on the independent variable. In this case it would be time. The constant variable or controlled variable are something that doesn't change and would skew the results. One may be the exact same problem for both groups. Try to come up with two more.
Answer:
2) Their kinetic energy increases.
Explanation:
The particles have more kinetic energy because they move around more when they are a liquid.
Answer: Theoretical yield is 313.6 g and the percent yield is, 91.8%
Explanation:
To calculate the moles :


According to stoichiometry :
1 mole of
require 3 moles of 
Thus 2.8 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
As 1 mole of
give = 2 moles of 
Thus 2.8 moles of
give =
of 
Mass of 
Theoretical yield of liquid iron = 313.6 g
Experimental yield = 288 g
Now we have to calculate the percent yield

Therefore, the percent yield is, 91.8%