Answer:
No.
Explanation:
Given the following :
Velocity (V) of ball = 5m/s
Radius = 1m
Can the ball reach the highest point of the circular track
of radius 1.0 m?
The highest point in the track could be considered as the diameter of the circle :
Radius = diameter / 2;
Diameter = (2 * Radius) = (2*1) = 2
Maximum height which the ball can reach :
Using the relation :
Kinetic Energy = Potential Energy
0.5mv^2 = mgh
0.5v^2 = gh
0.5(5^2) = 9.8h
0.5 * 25 = 9.8h
12.5 = 9.8h
h = 12.5 / 9.8
h = 1.2755
h = 1.26m
Therefore maximum height which can be reached is 1.26m.
Since h < Diameter
Here are the answers:
1. Geosphere (though the term lithosphere is mostly used)
2. Both ice and wind (glaciers, and really strong winds)
3. Water
4. Its inertia (the Earth is constantly "falling" towards the Sun due to its gravitational pull, but its inertia helps the Earth from maintaining its orbit.)
5. The rotating Earth
6. one year
7. The equator
8. It depends on how much of the sunlit side of the Moon faces the Earth
9. When an object in space comes between the Sun and a third object
10. D<span>ifferences in how much the Moon and the Sun pull on different parts of Earth
11. b. False
12. a. True
Hope my answers have come to your help.</span>
Answer: 10.36m/s
How? Just divide 200m by 19.3 and you will get how fast he ran per m/s
Answer:
Electric and magnetic field waves are oriented at 90 degree angles relative to each other.
Explanation: