Answer:
I think it is three times I'm not sure
Answer: someone help me with my work its so hard
Explanation:
The volume of the flask would simply be equal to the
volume of the water. And the mass of the water would be the difference after
and before weigh.
mass of water = 489.1 g – 241.3 g
mass of water = 247.8 g
Therefore the volume of water (which is also the volume
of the flask) is:
volume = 247.8 g / (1.00 g/cm^3)
volume = 247.8 cm^3
The total mass of the flash when filled with chloroform
would be:
total mass with chloroform = 241.3 g + 247.8 cm^3 (1.48
g/cm3)
total mass with chloroform = 608.04 g
Answers:
volume = 247.8 cm^3
total mass with chloroform = 608.04 g
It is greater than the total mass
Answer:
The total heat required is 691,026.36 J
Explanation:
Latent heat is the amount of heat that a body receives or gives to produce a phase change. It is calculated as: Q = m. L
Where Q: amount of heat, m: mass and L: latent heat
On the other hand, sensible heat is the amount of heat that a body can receive or give up due to a change in temperature. Its calculation is through the expression:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the change in temperature (Tfinal - Tinitial).
In this case, the total heat required is calculated as:
- Q for liquid water. This is, raise 248 g of liquid water from O to 100 Celsius. So you calculate the sensible heat of water from temperature 0 °C to 100° C
Q= c*m*ΔT

Q=103,763.2 J
- Q for phase change from liquid to steam. For this, you calculate the latent heat with the heat of vaporization being 40 and being 248 g = 13.78 moles (the molar mass of water being 18 g / mol, then
)
Q= m*L

Q=562.0862 kJ= 562,086.2 J (being 1 kJ=1,000 J)
- Q for temperature change from 100.0
∘
C to 154
∘
C, this is, the sensible heat of steam from 100 °C to 154°C.
Q= c*m*ΔT

Q=25,176.96 J
So, total heat= 103,763.2 J + 562,086.2 J + 25,176.96 J= 691,026.36 J
<u><em>The total heat required is 691,026.36 J</em></u>