I am pretty sure it is 4.002602
Answer:
3.0 × 10²⁰ molecules
Explanation:
Given data:
Mass of ethanol = 2.3 × 10⁻²°³ g
Number of molecules = ?
Solution:
Number of moles of ethanol:
Number of moles = mass/ molar mass
Number of moles = 2.3 × 10⁻²°³ g / 46.07 g/mol
Number of moles = 0.05 × 10⁻²°³ mol
Number of molecules:
One mole = 6.022 × 10²³ molecules
0.05 × 10⁻²°³ mol × 6.022 × 10²³ molecules / 1 mol
0.30 × 10²⁰°⁷ molecules
3.0 × 10¹⁹°⁷ molecules which is almost equal to 3.0 × 10²⁰ molecules.
Answer: The empirical formula of the compound becomes 
<u>Explanation:</u>
The empirical formula is the chemical formula of the simplest ratio of the number of atoms of each element present in a compound.
We are given:
Mass of C = 48.38 g
Mass of H = 6.74 g
Mass of O = 53.5 g
The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:
......(1)
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Molar mass of C = 12 g/mol
Molar mass of H = 1 g/mol
Molar mass of O = 16 g/mol
Putting values in equation 1, we get:



- <u>Step 2:</u> Calculating the mole ratio of the given elements.
Calculating the mole fraction of each element by dividing the calculated moles by the least calculated number of moles that is 3.023 moles



- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of C : H : O = 1 : 2 : 1
Hence, the empirical formula of the compound becomes 