1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
8

A motorist drives along a straight road at a constant speed of 15.0 m/s. Just as she passes a parked motorcycle police offi cer,

the offi cer starts to accelerate at 2.00 m/s2 to overtake her. Assuming that the offi cer maintains this acceleration, (a) determine the time interval required for the police offi cer to reach the motorist. Find (b) the speed and (c) the total displacement of the offi cer as he overtakes the motorist.

Physics
2 answers:
olya-2409 [2.1K]3 years ago
8 0
The answer is in attachment.

ad-work [718]3 years ago
5 0

Answer:

a) The time the police officer required to reach the motorist was 15 s.

b) The speed of the officer at the moment she overtakes the motorist is 30 m/s

c) The total distance traveled by the officer was 225 m.

Explanation:

The equations for the position and velocity of an object moving in a straight line are as follows:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x = position at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

v = velocity at time t

a)When the officer reaches the motorist, the position of the motorist is the same as the position of the officer:

x motorist = x officer

Using the equation for the position:

x motirist = x0 + v · t (since a = 0).

x officer = x0 + v0 · t + 1/2 · a · t²

Let´s place our frame of reference at the point where the officer starts following the motorist so that x0 = 0 for both:

x motorist = x officer

x0 + v · t = x0 + v0 · t + 1/2 · a · t²      (the officer starts form rest, then, v0 = 0)

v · t = 1/2 · a · t²    

Solving for t:

2 v/a = t

t = 2 · 15.0 m/s/ 2.00 m/s² = 15 s

The time the police officer required to reach the motorist was 15 s.

b) Now, we can calculate the speed of the officer using the time calculated in a) and the  equation for velocity:

v = v0 + a · t

v = 0 m/s + 2.00 m/s² · 15 s

v = 30 m/s

The speed of the officer at the moment she overtakes the motorist is 30 m/s

c) Using the equation for the position, we can find the traveled distance in 15 s:

x = x0 + v0 · t + 1/2 · a · t²

x = 1/2 · 2.00 m/s² · (15s)² = 225 m

You might be interested in
Which of the following is not a part of dalton s atomic theory?
Alex777 [14]
<span>c. atoms are always in motion..............</span>
6 0
3 years ago
Read 2 more answers
What's the difference mass and weight
yanalaym [24]

Answer:

Mass doesn't change.

Weight is measured based on gravitational pull.

Explanation:

4 0
2 years ago
The atoms in a solid move about freely
ivolga24 [154]

No, not exactly.  They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.

It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".

6 0
3 years ago
Two blocks are connected by a light weight, flexible cord that passes over a frictionless pulley.Ifm1=2 kg and m2 = 3 kg, and bl
Vera_Pavlovna [14]

Answer:

t = 1.41 sec.

Explanation:

If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.

First, we need to find the value of  acceleration, which is the same for both blocks.

If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:

F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)

⇒ a = (\frac{(m₂-m₁)}({m₁+m₂} * g = g/5 m/s²

Once we got the value of a, we can use for instance this kinematic equation, and solve for t:

Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.

6 0
3 years ago
What is the wavelength of a wave traveling at 300 m/s if the frequency is 10 Hz?
lions [1.4K]

Answer:

30 m

Explanation:

The wavelength of a wave is found by the velocity divided by the frequency. Therefore, the wavelength is (300 m/s)/(10 Hz) = 30 m

I hope this helps! :)

8 0
3 years ago
Other questions:
  • In EXACTLY 13 words explain how global warming happens on Earth.
    15·1 answer
  • The mass of a moving object increases, but its speed stays the same. What happens to the kinetic energy of the object as a resul
    12·2 answers
  • If a 42kg rolling object slows from 11.5 m/s to 3.33 m/s how much work does friction do?
    6·1 answer
  • How did the theory of relativity change the law of conservation of energy?
    14·1 answer
  • Can any juniors who go to Texas connections academy help me out with physics?
    6·1 answer
  • What is one advantage a primary source has over a secondary source? A. A primary source always includes several perspectives. B.
    5·1 answer
  • What do all elements have in common?
    10·1 answer
  • What is square rot of 80
    12·2 answers
  • A bowling ball traveling with constant speed hits the pins at the end of a bowling lane 16.5m long. The bowler hears the sound o
    6·1 answer
  • Please help with my geology hw
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!