Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>
Lets find the electronegativity difference between the bonded atoms;
C-H = 2.6-2.2 = 0.4
C-F = 4.0-2.6 = 1.4
F-F = 4.0-4.0 = 0
H-O = 3.4-2.2 = 1.2
Here the electronegativity difference is highest for C-F bond hence C-F bond is most polar.
Answer:
Different types of isotopes are used for different materials or objects. For radiometric dating, uranium-235 is considered best for it while carbon-14 is used for dating of rocks. It is also used for dating of wood samples.
Explanation:
Carbon-14 and uranium-235 are used for different materials or objects for measuring the age of these materials. These two isotopes are radioactive in nature which means they emit gamma radiations which allow us to find the age of different objects. Carbon-14 has a low half life so it can be used for those objects which are present before thousands of years while uranium-235 is used for materials which are millions of years old due to high half life.