Photochemical smong result from the interaction of pollution in the presence of sunlight. The photochemical smog is result of the <span> chemical reaction in the air between the sunlight, nitrogen oxides and volatile organic compounds.
</span>It is noticed as a brown haze above cities. <span>The negative effects are: production of chlorofluorocarbons (CFCs) increased UV radiation, irritation to the eyes, nose, and throat. </span>
Answer:
crystalline and amorphous.
Explanation:
Crystalline solids are the most common type of solid, they are characterized by a regular crystalline organization of atoms that confer a long-range order, Amorphous, or non-crystalline, solids lack the long-range order
Answer:
0.76 mole of Fe2S3.
Explanation:
Step 1:
Determination of the number of mole in 449g iron(III)bromide, FeBr3. This is illustrated below:
Mass of FeBr3 = 449g
Molar mass of FeBr3 = 56 + (80x3) = 296g/mol
Mole of FeBr3 =..?
Mole = Mass /Molar Mass
Mole of FeBr3 = 449/296
Mole of FeBr3 = 1.52 moles
Step 2:
The balanced equation for the reaction. This is given below:
2FeBr3 + 3Na2S —> 6NaBr + Fe2S3
Step 3:
Determination of the number of mole of Fe2S3 produced from the reaction of 449g ( i.e 1.52 moles) of FeBr3. This is illustrated below:
From the balanced equation above,
2 moles of FeBr3 reacted to produce 1 mole of Fe2S3.
Therefore, 1.52 moles of FeBr3 will react to produce = (1.52 x 1)/2 = 0.76 mole of Fe2S3.
Therefore, 0.76 mole of Fe2S3 is produced from the reaction.
Answer: Limestone
Explanation: Limestone contains calcium carbonate which are essential raw materials for the manufacture of cement used in building.
The empirical formula is K₂CO₃.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of K:C:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio</u>¹ <u>Integers</u>²
K 0.104 2.00 2
C 0.052 1.00 1
O 0.156 3.00 3
¹ To get the molar ratio, you divide each number of moles by the smallest number.
² Round off the number in the ratio to integers to integers (2, 1, and 3).
The empirical formula is K₂CO₃.