633.97 L
Explanation:
Well use the combined gas law;
P₁V₁T₁ = P₂V₂T₂
We need to change the temperatures into Kelvin;
18.9°C= 292.05 K
5.9°C = 279.05 K
756 * 512 * 292.05 = 639 * V₂ * 279.05
113,044,377.6 = 178,312.95 V₂
V₂ = 113,044,377.6 / 178,312.95
V₂ = 633.97 L
Before we describe the phases of the Moon, let's describe what they're not. Some people mistakenly believe the phases come from Earth's shadow cast on the Moon. Others think that the Moon changes shape due to clouds. These are common misconceptions, but they're not true. Instead, the Moon's phase depends only on its position relative to Earth and the Sun.
The Moon doesn't make its own light, it just reflects the Sun's light as all the planets do. The Sun always illuminates one half of the Moon. Since the Moon is tidally locked, we always see the same side from Earth, but there's no permanent "dark side of the Moon." The Sun lights up different sides of the Moon as it orbits around Earth – it's the fraction of the Moon from which we see reflected sunlight that determines the lunar phase.
Assuming its at r. t.p and pressure
no. of moles = 96/24=4moles
altho some books will say that its 23.7dm3/mole but that doesnt really matter because its the process that matters
Answer:
63.25 grams of CO₂
Explanation:
To convert from liters to grams, we first need to convert from liters to moles. To do this, we divide the liters by 22.4, the amount of liters of a gas per mole.
32.2 / 22.4
= 1.4375 moles of CO₂
Now we want to convert from moles to grams. To do this, we multiply the moles by the molar mass of CO₂. The total molar mass can be found on the periodic table by adding up the molar mass of carbon (12) and two oxygen (32).
12 + 32 = 44
Now we want to multiply the moles by the molar mass.
1.4375 • 44
= 63.25 grams of CO₂
This is your answer.
Hope this helps!