Answer:
5. gains two electrons.
Explanation:
In order to determine the most stable monoatomic ion of oxygen, we need to consider the octet rule: atoms will gain, lose or share electrons to complete their valence shell with 8 electrons.
Oxygen is in the Group 16 in the Periodic Table, so it has 6 valence electrons. Therefore, it will gain two electrons to have the electron configuration of the closest noble gas.
Matter? all matter is made of atoms and has mass and volume. i think hope it helps
Answer: Boyle's Law
Explanation:
Boyle's Law which is also called Mariotte's law was formulated by physicist Robert Boyle in 1662.
It posits that the pressure (p) of a given quantity of gas varies inversely with its volume (v) at constant temperature.
As the Scuba Diver went deeper, the volume of air dropped so the pressure increased.
Please do react or comment to the answer if you have any issues or if you feel like this helped you so we can help others as well. Thank you.
<span>Answer:
(16.2 g C2H6O2) / (62.0678 g C2H6O2/mol) / (0.0982 kg) = 3.9704 mol/kg = 3.9704 m
a.)
(3.9704 m) x (1.86 °C/m) = 7.38 °C change
0.00°C - 7.38 °C = - 7.38 °C
b.)
(3.9704 m) x (0.512 °C/m) = 2.03 °C change
100.00°C + 2.03 °C = 102.03 °C</span>
Answer : The correct expression for equilibrium constant will be:
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Therefore, the correct expression for equilibrium constant will be, ![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)