Gas are well separated with no regular arrangement<span>. liquid are close together and solid are right on-top of each other packed tightly</span>
Answer:
The equilibrium concentration of CH₃OH is 0.28 M
Explanation:
For the reaction: CO (g) + 2H₂(g) ↔ CH₃OH(g)
The equilibrium constant (Keq) is given for the following expresion:
Keq=
=14.5
Where (CH3OH), (CO) and (H2) are the molar concentrations of each product or reactant.
We have:
(CH3OH)= ?
(CO)= 0.15 M
(H2)= 0.36 M
So, we only have to replace the concentrations in the equilibrium constant expression to obtain the missing concentration we need:
14.5= 
14.5 x (0.15 M) x
= (CH₃OH)
0.2818 M = (CH₃OH)
Answer:
23.46 mmHg is the vapor pressure for the solution
Explanation:
To solve this problem we need to apply a colligative property, which is the lowering vapor pressure.
The formula for this is: P°- P' = P° . Xm
where P' is vapor pressure for solution and P°, vapor pressure for pure solvent.
Let's determine the Xm (mole fraction for solute)
We calculate the moles of the solute and the solvent and we sum each other:
Moles of solute: 60 g /342 g/mol = 0.175 moles of sucrose
Moles of solvent: 250 g / 18 g/mol = 13.8 moles of water
Total moles: 13.8 moles + 0.175 moles = 13.975 moles
Xm for solute: 0.175 moles / 13.975 moles = 0.0125
Let's replace data in the formula: 23.76 mmHg - P' = 23.76 mmHg . 0.0125
P' = - (23.76 mmHg . 0.0125 - 23.76 mmHg) → 23.46 mmHg