Answer:
112 m/s², 79.1°
Explanation:
In the x direction, given:
x₀ = 0 m
x = 19,500 cos 32.0° m
v₀ = 1810 cos 20.0° m/s
t = 9.20 s
Find: a
x = x₀ + v₀ t + ½ at²
19,500 cos 32.0° = 0 + (1810 cos 20.0°) (9.20) + ½ a (9.20)²
a = 21.01 m/s²
In the y direction, given:
y₀ = 0 m
y = 19,500 sin 32.0° m
v₀ = 1810 sin 20.0° m/s
t = 9.20 s
Find: a
y = y₀ + v₀ t + ½ at²
19,500 sin 32.0° = 0 + (1810 sin 20.0°) (9.20) + ½ a (9.20)²
a = 109.6 m/s²
The magnitude of the acceleration is:
a² = ax² + ay²
a² = (21.01)² + (109.6)²
a = 112 m/s²
And the direction is:
θ = atan(ay / ax)
θ = atan(109.6 / 21.01)
θ = 79.1°
Answer:

Explanation:
Given
--- Surface Tension
--- Radius
Required
Determine the required force
First, we calculate the circumference (C) of the circular plate





The applied force is then calculated using;


Answer: C
Explanation: The correct answer would be Inertial. I take the quiz and got the answer rght!!
Answer:
The acceleration of the ball is 
Explanation:
From the question we are told that
The maximum height the ball reachs is 
The horizontal component of the initial velocity of the ball is
The vertical component of the initial velocity of the ball is 
The vertically motion of the ball can be mathematically represented as

Here the final velocity at the maximum height is zero so 
Making the acceleration
the subject we have

substituting values


The negative sign shows that the direction of the acceleration is in the negative y-axis