Potential energy = (weight) x (height)
After the car has been raised 2.5 meters, it has
(11,000) x (2.5) = 27,500 Joules
MORE potential energy than it had before it was lifted.
That's the energy that has to come from the work you do to lift it.
Since no mechanical process is ever 100% efficient, the work required
to accomplish this task is <em>at least 27,500 joules</em>.
<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
I’m not 100% sure but i think it’s A because if you divide the speed by the time you get 2 and also all the other answer choices don’t make any sense!
Contour lines are lines that signifies the elevation on a mountain or hill
Explanation:
Work = force × displacement
532 J = 48 N × d
d ≈ 11 m