Solution:
initial sphere mvr = final sphere mvr + Iω
where I = mL²/3 = 2.3g * (2m)² / 3 = 3.07 kg·m²
0.25kg * (12.5 + 9.5)m/s * (4/5)2m = 3.07 kg·m² * ω
where: ω = 2.87 rad/s
So for the rod, initial E = KE = ½Iω² = ½ * 3.07kg·m² * (2.87rad/s)²
E = 12.64 J becomes PE = mgh, so
12.64 J = 2.3 kg * 9.8m/s² * h
h = 0.29 m
h = L(1 - cosΘ) → where here L is the distance to the CM
0.03m = 1m(1 - cosΘ) = 1m - 1m*cosΘ
Θ = arccos((1-0.29)/1) = 44.77 º
Friction is the force you get when you (for example) Rub something with another, it's a force that may generate heat and even some resistance. Another example is rubbing your hands together, they get hot, therefore friction is working, without friction you wouldn't be able to stop moving.
The popularity of modern sports help advance a society by bringing people together.
The horizontal component of the magnetic field is 12.6 μT.
The magnetic influence on moving electric currents, electric charges, and magnetic materials is described by a magnetic field, which is a vector field. When a charge moves through a magnetic field, a force that is perpendicular to both its own velocity and the magnetic field operates on it.
The horizontal component of the Earth's magnetic field is perpendicular to the axis of a circular coil with five turns and a diameter of D = 30.0 cm that is vertically orientated.
A coil current of I = 0.600 A causes a horizontal compass to deflect 45.0° from magnetic north when it is positioned in the coil's center.
Let B be the magnetic field and R be the radius of the circular coil.
Then the horizontal component of the Earth's magnetic field is given as:
B(h) = B(coil) = μ₀ NI / 2R
B(h) = (4π × 10⁻⁷ ) (5)(0.6) / 0.3
B(h) = 12.6 μT
Learn more about magnetic field here:
brainly.com/question/14411049
#SPJ4
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, from the completed question, determine the distance (in meters) the horse covered in the first ten seconds of it's gallop and apply the formula below.
Average velocity = distance (in meters) ÷ time (in seconds as provided in this question)
The unit for velocity (to be used here) is m/s or ms⁻¹