The maximum height reached by the ball is 99.2 m
Explanation:
When the ball is thrown straight up, it follows a free fall motion, which is a uniformly accelerated motion with constant acceleration (
towards the ground). Therefore, we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
In this problem, we have:
u = 44.1 m/s is the initial vertical velocity of the ball
v = 0 is the final velocity when the ball reaches the maximum height
s is the maximum height
is the acceleration of gravity (downward, so negative)
Solving for s, we find the maximum height reached by the ball:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Answer:
B. 22,22,23,23,22,22,23
Explanation:
The standard deviation is a measure of dispersion or variability of a data set. In order to determine the data set that has the smallest standard deviation, we shall investigate on the ranges of the data sets given. The range of a data set is simply the difference between the maximum and minimum values in a data set. A data set that has a smaller range also has a smaller standard deviation.
From the alternatives given, the data set given by alternative B has the smallest range and consequently the smallest standard deviation.
The maximum value is 23 while the minimum is 22. The range is 1.
Answer:
There isnt enough in your question to answer the question bro, like we need a picture or something bro.
Explanation:
The mass of an object on Earth is the same as its mass on the Moon. The weight is different.
Weight = m * g
Weight ( Moon ) = 40 kg * 1.6 m/s² = 64 N
If the mass of an object on Earth is 40 kg, its mass on the Moon is 40 kg and its weight on the Moon is 64 N.
The actual size of the Solar system is too big to show without making a much smaller model. If someone wants to see the orientation of the planets a model has to be made so we can see it without flying out too space.