The answer is 0.5 moles because if 1 moles of o2 is consumed to produce 2 moles of Na2O, then 0.5 moles of o2 will be consumed to produce 1 mole of Na2O.<span />
Your answer is mass and speed! Please give me brainlist :)
Explanation:
A gas has a temperature of 273.15 K and a pressure of 101.325 kPa. It can be concluded that this gas has reached standard temperature and pressure.
Standard temperature is zero degree celcius which corresponds to 273.15 degree kelvin.
Standard pressure is 760 mmHg which corresponds to 101.325 kPa.
Answer:
<em>C. The electron-withdrawing fluorine atoms pull electron density from the oxygen in trifluoroacetate. The negative charge is more stabilized in trifluoroacetate by this effect.</em>
<em></em>
Explanation:
<em>The structures of trifluoroacetate and acetic acid are both shown in the image attached.</em>
<em>The trifluoroacetate anion (CF3CO2-), just like the acetate anion has in the middle, two oxygen atoms.</em>
<em>However, in the trifluoroacetate anion, there are also three electronegative fluorine atoms attached to the nearby carbon atom attached to the carbonyl, and these pull some electron density through the sigma bonding network away from the oxygen atoms, thereby spreading out the negative charge further. This effect, called the "inductive effect" stabilizes the anion formed,the trifouoroacetate anion is thus more stabilized than the acetate anion.</em>
<em>Hence, trifluoroacetic acid is a stronger acid than acetic acid, having a pKa of -0.18.</em>
<em></em>
<u><em>Hope this helps!</em></u>
<u><em>Please mark brainliest!</em></u>
Answer:

Explanation:
To convert from moles to grams, we must use the molar mass.
Recall that water's molecular formula is H₂O. It contains hydrogen and oxygen. Look up the two elements masses on the Periodic Table.
- Hydrogen (H): 1.008 g/mol
- Oxygen (O): 15.999 g/mol
Now, use these masses to find water's mass. The subscript of 2 tells us there are 2 atoms of hydrogen, so we multiply hydrogen's mass by 2 and add oxygen's.
- H₂O= 2(1.008 g/mol) + 15.999 g/mol = 18.015 g/mol
Use the molar mass as a ratio.

Multiply by the given number of moles.

The moles of water will cancel.



Round to the nearest whole number. The 0 in the tenth place tells us to leave the number as is.

There are about <u>54 grams</u> of water in 3 moles.