Answer:
1.08
Explanation:
This is the case of interference in thin films in which interference bands are formed due to constructive interference of two reflected light waves , one from upper layer and the other from lower layer . If t be the thickness and μ be the refractive index then
path difference created will be 2μ t.
For light coming from rarer to denser medium , a phase change of π occurs additionally after reflection from denser medium, here, two times, once from upper layer and then from the lower layer , so for constructive interference
path diff = nλ , for minimum t , n =1
path diff = λ
2μ t. = λ
μ = λ / 2t
= 626 / 2 x 290
= 1.08
This shifts the star’s spectral lines toward the blue end of the spectrum. If the star is moving away from us, it’s waves are effectively stretched out when they reach earth, increasing their wavelength. This shifts the star’s spectral lines toward the red end of the spectrum.
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed and changes it to . The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by
The initial and final momentums are, respectively
The change of momentum is
It is numerically equal to the Impulse J
We are given
The impulse the car experiences during that time is
J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
The force and the air resistance depends on the mechanical enserfy.