Answer:
3
three half-filled orbitals each capable of forming a single covalent Bond and an additional lone - pair of electrons
Answer:
The concentration of I at equilibrium = 3.3166×10⁻² M
Explanation:
For the equilibrium reaction,
I₂ (g) ⇄ 2I (g)
The expression for Kc for the reaction is:
![K_c=\frac {\left[I_{Equilibrium} \right]^2}{\left[I_2_{Equilibrium} \right]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B%5Cleft%5BI_2_%7BEquilibrium%7D%20%5Cright%5D%7D)
Given:
= 0.10 M
Kc = 0.011
Applying in the above formula to find the equilibrium concentration of I as:
![0.011=\frac {\left[I_{Equilibrium} \right]^2}{0.10}](https://tex.z-dn.net/?f=0.011%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B0.10%7D)
So,
![\left[I_{Equilibrium} \right]^2=0.011\times 0.10](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.011%5Ctimes%200.10)
![\left[I_{Equilibrium} \right]^2=0.0011](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.0011)
![\left[I_{Equilibrium} \right]=3.3166\times 10^{-2}\ M](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%3D3.3166%5Ctimes%2010%5E%7B-2%7D%5C%20M)
<u>Thus, The concentration of I at equilibrium = 3.3166×10⁻² M</u>
Answer:
1218.585
Explanation:
Looking at the subscripts we know there are 2 atoms of Fe, 3 atoms of C, and 6 of O.
Take the molar mass of each atom (from the periodic table) and multiply by the # of atoms
Fe: 55.845×2= 111.69
C: 12.011×3= 36.033
O:15.999×6=95.994
Add the values together: 243.717 g/mol
That is 1 mole of the molecule. Multiply by 5 for the final answer.
243.717×5=1218.585
Answer:
Is it prescribe to you?If so than yes if not then no need to
Explanation:
Answer:
A
Explanation:
The law of conservation of mass states that matter can never be created nor destroyed but can be converted from one form to another.
The law of conservation of energy posits that energy cannot be created nor destroyed but can be converted from one form to another.
These laws are the basic laws of existence. Although the laws have been adjusted, they still form the basic principle behind several scientific laws and are responsible for a whole lot of scientific advancements.
While the first law focuses on matter and the content of matter in a body, the second law basically focuses on energy. The second law serves to support the inter convertibility behind the several forms or types of energy.
For example, to do many useful work at home, it is found that energy is converted from its electric form to say heat in an electric iron to press our clothes.
Also, the first law is a fundamental principle useful in the balancing of our chemical equations.