1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
2 years ago
6

Do sound waves always travel in straight lines explain

Physics
1 answer:
babunello [35]2 years ago
3 0
They travel like waves. Just throw rock at lake you will see wave. When it bumps to barrier barrier reflects some part of it . Not like a line lika a wave
You might be interested in
A metal block suspended from a spring balance is submerged in water. You observe that the block displaces 55 cm3 of water and th
DiKsa [7]

Answer:

8977.7 kg/m^3

Explanation:

Volume of water displaced = 55 cm^3 = 55 x 10^-6 m^3

Reading of balance when block is immersed in water = 4.3 N

According to the Archimedes principle, when a body is immersed n a liquid partly or wholly, then there is a loss in the weight of body which is called upthrust or buoyant force. this buoyant force is equal to the weight of liquid displaced by the body.

Buoyant force = weight of the water displaced by the block

Buoyant force = Volume of water displaced x density of water x g

                        = 55 x 10^-6 x 1000 x .8 = 0.539 N

True weight of the body = Weight of body in water + buoyant force

m g = 4.3 + 0.539 = 4.839

m = 0.4937 kg

Density of block = mass of block / volume of block

= \frac{0.4937}{55\times10^{-6}}

Density of block = 8977.7 kg/m^3

4 0
3 years ago
what happens to the water after it rains? a. precipitation b. runoff c. condensation user: what do organisms from the ocean use
Vedmedyk [2.9K]
The rain gets evaporated in to water vapor and is returned to the clouds where they go through condensation and then they poud down as rain or A.K.A,  Precipitation.
4 0
3 years ago
If you wish to observe features that are around the size of atoms, say 1 .5 x 100 m, with electromagnetic radiation, the radiati
chubhunter [2.5K]

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

If you wish to observe features that around the size of atoms, say 1.5×10⁻¹⁰ m, with electromagnetic radiation, the radiation must have a wavelength about the size of the atom itself.

a) If you had a microscope which was capable of doing this, what would the frequency of electromagnetic radiation be, in hertz that you would have to use?

b) What type of electromagnetic radiation would this be?

Given Information:

Wavelength = λ = 1.5×10⁻¹⁰  m

Required Information:

a) Frequency = f = ?

b) Type of electromagnetic radiation = ?

Answer:

a) Frequency = f = 2×10¹⁸ Hz

b) Type of electromagnetic radiation = X-rays

Explanation:

a) The frequency of the electromagnetic radiation is given by

f = c/ λ

Where λ  is the wavelength of the electromagnetic radiation and c is the speed of light and its value is 3×10⁸ m/s

f = 3×10⁸/1.5×10⁻¹⁰

f = 2×10¹⁸ Hz

Therefore, the frequency of the electromagnetic radiation would be 2×10¹⁸ Hz.

b)

The frequency range of X-rays is 3×10¹⁶ Hz to 3×10¹⁹ Hz

The frequency 2×10¹⁸ lies in that range, therefore, the type of electromagnetic radiation is X-rays

5 0
3 years ago
The diagram shows forces acting on a boat.
Greeley [361]
A

I hope this helps!!:)
7 0
3 years ago
You hang a heavy ball with a mass of 10 kg from a gold wire 2.6 m long that is 1.6 mm in diameter. You measure the stretch of th
PolarNik [594]

<u>Answer:</u> The Young's modulus for the wire is 6.378\times 10^{10}N/m^2

<u>Explanation:</u>

Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.

The equation representing Young's Modulus is:

Y=\frac{F/A}{\Delta l/l}=\frac{Fl}{A\Delta l}

where,

Y = Young's Modulus

F = force exerted by the weight  = m\times g

m = mass of the ball = 10 kg

g = acceleration due to gravity = 9.81m/s^2

l = length of wire  = 2.6 m

A = area of cross section  = \pi r^2

r = radius of the wire = \frac{d}{2}=\frac{1.6mm}{2}=0.8mm=8\times 10^{-4}m      (Conversion factor:  1 m = 1000 mm)

\Delta l = change in length  = 1.99 mm = 1.99\times 10^{-3}m

Putting values in above equation, we get:

Y=\frac{10\times 9.81\times 2.6}{(3.14\times (8\times 10^{-4})^2)\times 1.99\times 10^{-3}}\\\\Y=6.378\times 10^{10}N/m^2

Hence, the Young's modulus for the wire is 6.378\times 10^{10}N/m^2

3 0
3 years ago
Other questions:
  • In a semiclassical model of the hydrogen atom, the electron orbits the proton at a distance of 0.053 nm. Part A What is the elec
    12·1 answer
  • A disk shaped grindstone of mass 3.0 kg and radius 8 cm is spinning at 600 rpm. After the power is shut off the frictional torqu
    6·1 answer
  • A weight lifter raises a 1600 N barbell to a height of 2.0 meters. How much work was done? W = Fd
    13·2 answers
  • Three electromagnetic waves arrive at a point from the same direction. They are polarized parallel to an x axis, and their elect
    7·1 answer
  • Clara made a chart to summarize some of the evidence that supports the big bang theory.
    12·2 answers
  • Which produces more energy? Nuclear fission or nuclear fission?
    9·1 answer
  • A sled of mass 50 kg is pulled along a snow-covered, flat ground. The static friction coefficient is 0.3 and the kinetic frictio
    10·1 answer
  • Explain the term majority and minority carriers of a material with respect to the acceptor and donor impurity.​
    13·2 answers
  • Now, perform the experiment. Using the straw, blow air onto the sand in pan 3. Then use the hair dryer to blow air on the sand i
    14·2 answers
  • For the galvanic cell at 298 k zn(s) 2in2 (aq)zn2 (aq) 2in (aq) eocell = 0.36 v what is the equilibrium constant, k?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!